" AD-A152 812

UNCLASSIFIED

DEE?NRTIONS OF SOLID EXPLOSIVES(U) TEXRS UNIV AT T .

NGTON
AFOSR-83-08824

N E BRENER 28 DEC 84 AFOSR-TR-85-8261

F/G 19/1 NL




SN
Tz

‘ Ji

‘ |
T
, i

22 s s

-

Il

I

ES




oy Ty b g hd hd v g v - TyYT MUY T TR T e T Ty 0 ® T e T T oe T o
i) s b A St sben arvl asacatl ShdEaat S 3 rullD - N Pad P RN A > .

Eaiath e 4

AD-A152 012

fILE COPY

c REPRODUCED AT GOV JIENT FYPENSE

Und Asserred

R L
SE L HIT Y CLASSIFICATI’N OF THIS PAGE / S~ /

e
REPORTDOCUMENTAHONPAGé\J,/

Shnee aum |

1a REPORTY SECURITY CLASSIFICATION 1o HESTRICTIVE MARKINGS
Unclassified
T‘n SECURITY CLASSIFICATION AUTHORITY 1
Apvroved for pullic ol :n308
b DECLASSIFICATION/DOWNGRADING SCHEDULE distriluation unlinited -
4 PERFCRMING ORGANIZATION REPORT NUMBER(S) B -
- > 9 G
AFOSR-TR- 55-0261

63 NVAME OF PERFORMING ORGANIZATION I6L. OFFICE SYMBO L 7a NAME OF MONITORING ORGANIZATIUN

- . . : il licable

ihe University of Texas fopplicadler \

at, Ar]‘inqton Yor Ak (&4 ‘,/ V

ve ADDRESS City Stote and ZIF Code) T, ADOHRESS 1ty St and ZIP Code)

sox 19145

arlington, Texas 76019
8a MWAME COF FUNDING/SPONSORING 8b. OFFICE SYMBO!. 9 PROCUREMENT INSTRUMENWNT IDENTIFICATION NUMVBA 3

CRGANIZATION : : (f applicable

Y Air Force Office AFOSR/NE/ AFOSR-83-0024
of Scientific Research

S ADURESS (.iv Nate and Z1P Code) 10 SOUR_EE_A'!)F FUNDING NOS

Lnited States Air Force PROGRAM PROJECT TASK WORK UNIT

. - . . . . ELEMENT NO NO NO NO.

nir Force Office of Scientific Research

Luiling 410, Bolling AER, D.C. 0332
1Y TOTLE sciddr Securily Classificafion) 9 la /y A

UETLIATIUNS OF SOLID EXPLOSIVES LIIORE & Dol
12 PERSCNAL AUTHORLS)

Or. Nathan E. Brener

13a. T-PE OF REPORT  Fingl [13» YIME COVERED 14 DATE OF REPORT +Yr, Mo, Days 15 PAGE COUNT

scientific Report raom 11/1/82 t010/31/84] December 28, 1984 43
16 SUPPLEMENTARY NOTATION N ‘7 G

"{" M '\‘\..‘.g;'

1 H CCSATI CODES 18 SUBJECT TERMS (Continue o reterse if necessary and tdenlyfy by block number}

B by
SIELD rcﬂous’ SUB GA ; L
RS

] S

19 ABSTRACTY ‘Countinue un reterse of necessarmy and tdentify by block number,

waring tne past two years a very substantial amount of progress has been made toward the
main goal of this project, which is to calculate the activation energy of explosive
solecules.  The progress has come in the form of four different approaches to the problem:
Vi C1 method; 2) Gaussian 82 Computer Program; 3) MNDOC procedure; 4) Green's function
technigues. we have recently obtained Dr. Henry F. Schaefer's (I programs, which are
sererally considered to be the best and fastest CI programs in the world. We have almost
fini.her acapting these programs to the Cray computers, which arc among the fastest
uiipaters in the world and are often referred to as super computers. When this adaptotion
i warpleted, we will have the. first Cray version of Dr. Schaefer's Cl programs, and in
acdition, we have access to several large Cray computers on wihich to run the programs.
oo result, we expect to perferm very large and highly accurate I calculations on
capdosive nolecules of interest.  The new Cray version of these CI programs and the

slcuiLtions that will be done with 1t are expected Ly arousc a yery large amount of
oterest 1n the scientific community.  dne Gaussian P2 Computer Program 1s qeneraliy

W 0 Tihis Ty e AVAILABILITY OF ABLTRACT oABSTRACT

<

SLOULRITY CLALSIFICATICN

el B LaNE AL HPT LTI LSERS thclassified

N 220 TE LD Pros e NUNE o K A Pt S YO L

DR, Rt 3, Suda noal7et-5p001 | W

DD FORM 1473, 83 APR 8 5 E :;()(3:1‘ ' Jiwzss OBSO \/\K& A aA>SL F&“c

SECLRITY CLAGSSIHHFICATION OF 1015 Pad




r_ S v Bl A i el S e LAPEL NS S AR S e - Sodimin ndhed IR A el M MR SR G EAC AR A i A A AL TSRO Sl

2 ot
A

Oy e 0Tt g
| [NE . T 00 o e -
it LASN  REPRODUCHD AT GOL I RNMENT 7\ FNSE

SECURITr CLASSIF:CATION OF THIS PAGE

v ‘l_u CL} Y cont inuecd

Curisidered to be the state of the art program in the area of Moller-Plesset perturbation
theory. we have recently obtained access to a new Cray version of Gaussian €2 which is
not yct available to the general scientific community. With the combination of this new
program and tine large Lray computers to which we have access, we expect to perform
activation encrgy calculations that are better and more accurate than those that were
previously possible using Gaussian 82. The MNDOC method, which is a new correlated
version of the HNDO method, has been used to compute accurate values for the activation
enicrgy of methyl nitrite. We huve recently used Green's function theory to derive a new
vnie-clectron equation that goes beyond previous one-electron equations to include higher
crder correlation terms. As correlation plays a very important part in moleculer reactions,
tis new equaticn 1s expected to lead to significant improvements in the calculation of
motecular activation energies.
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summary ot Accuinplighinents

During the past two yedrs, ua very substantial amount of progress has becn
made toward the main goal of this project, which is to calculate the
activation energy of explosive molecules. The progress has come in the
form of four different approaches to the problem:

1) CI Calculations

It is well known that a full CI gives the best possible molecular
total energies and activation energies that can be computed for a
given basis set. However, since CI calculations can be very time-
consuming, one must have very fast programs and very large computers
in order to make the calculations feasible for explosive molecules
of interest. We have recently obtained Dr. Henry F. Schaefer's (I
programs, which are generally considered to be the best and fastest
in the world. 1In addition, we have access to several large Cray
computers, which are among the fastest in the world and are often
referred to as super computers. We have almost finished converting
Dr. Schaefer's CI programs to the Cray. Once we get these progr-ws l
running on the Cray, we expect to perform very accurate CI calcula-

tions on many explosive molecules of interest. The new Cray version

of these CI programs and the calculations that will be done with it '

are expected to arouse a large amount of interest in the scientific

community.

LA A

‘ 2) Gaussian 82 ‘
The Gaussian 82 computer package is generally considered to be (he
"state of the art" program in the area of Moller-Plesset perturbation

' theory. This type of perturbation theory, if carried to high enough '
order, can yield very accurate results for molecular activation |

3
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F cnergies. We have very recently obtained access to a new Cray version
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of Gaussian 82 which is not yet available to the general public.
With the combination of this new program and the Targe Cray computers
to which we have access, we expeét to perform activation enerav
calculations that are better and more accurate than those that were
previously possible using Gaussian 82.

MNDOC

The MNDOC method is a semi-empirical technique which is very fast
and could therefore be used to compute the activation energies of
large explosive molecules. One indication of MNDOC's potential is
that it has yielded accurate values for the activation energy of
methyl nitrite. Further improvements are needed in this method
before it can be applied to a wide range of explosive molecules.

We have recently discovered a modification that may greatly improve
the method's accuracy. This modification consists of adding a two-
configuration SCF to the MNDOC programs. The two-configuration SCF
is expected to work well for molecules in which the ground state
and first excited state are close in energy.

Green's Function Techniques

We have recentiy used Green's function theory to derive a new one-
electron equation that goes beyond previous one-electron equations
to include higher order correlation terms. As correlation plays a
very important part in molecular reactions, this new equation is
expected to lead to siqnificant improvements in the calculation of

molecular activation energies.

. - T . I Ty A L —r B
PRI I U TPy T DA W W S 1 el ol al . L p il Lol sdhtnintdbesad, A

_—— - — &

4 m——a s s

WA e e AERA A e o CABRE L o bl MRS -C -

TL.a

. ..




——— " T B M S 2 Moy Sty Shate Sk e e N AR AT AR Ree & A Sai S e SR T e VT TR T AT T OORON O T AT
AR ST T it T T =
I‘_-

DI

fﬂrﬁ‘r‘:f“‘rﬂ'v‘vv - v

——

T Y Y v v T
]

Introduction

The goal of this project is to calculate the amount of shocking or
Jostling that a solid explosive can withstand before detonating. The ultimate
objective is to determine, by means of the calculations, how to modify the
explosive so that it still retains all of its explosive power but becomes
less sensitive to shock. These less sensitive but equally powerful explosives
would reduce the number of accidents that occur among personnel involved in
handling, storing, transporting, and using the explosives.

The detonation process is complicated and involves many factors,
including “hot spots", propagation of acoustic or detonation waves, inter-
action (or scattering) between detonation waves and explosive molecules, etc.
However, the key factor in an explosive's sensitivity to shock is the
activation enerqgy of the molecules that make up the explosive. When an
explosive receives a shock, the enerqy of the molecules contained in the
explesive is increasad. In the region of the shock, if the enerqy of a

sufficient number of molecules is raised above the activation energy, then

the detonation begins. Thus if one can increase the activation energy, a
bigger shock will be required for detonation and the explosive will be safer

to handie. Therefcre the first step in the study of detonations is to

determine accurate values for the activation enerqv of the explosive molecules.

One can determine the activation energy of an explosive molecule by
calculating the total energy of the molecule as a function of a reaction
coordinate such as a bond length or bond angle. At the value of the
reaction coordinate where the total energy goes through a m.ximum, dissocia-
tiun, or detonation, occur., and the activation energy is the difference
between this maximum total enerqgy and the total energy of the molecule in

ity equilibrium state. Thus in order to obtain accurate valves for
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molecular activation energies, one must be able to compute accurate values

for molecular total energies.

It is well known that in order to obtain accurate and useful values 1
for molecular total energies, it is essential to include correlation effects.
Je have thoroughly studied four different methods for including correlation ia i
molecular calculations:
1) CI Method
2) Gaussian 82 Computer Program é
3) MNDOC Procedure
4) Green's Function Techniques
Very substantial progress has been made in all four of these areas and they »
R
all show great promise for yielding accurate molecular activation energies. :
tach of these methods is described in detail below. K
»
»
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I. Cl Method

As mentioned above, a very attractive feature of a full confiquration
interaction (CI) calculation is that it will yield the best possible molecular
activation energy that can be computed for a given basis set. Often it is
not necessary to carry the CI all the way to completion, but rather to
converge the CI to whatever degree of accuracy one desires for the molecular
activation energies. However, for explosive molecules of interest; an
accurate converged CI can be very time-consuming and therefore one must have

very fast computer programs and very fast computers in order to make the
calculation feasible.

We have recently obtained Dr. Henry F. Schaefer's CI programs]'lo, which
are generally considered to be the best and fastest in the world. In
addition to acquiring these programs, we are at present making a major
improvement in their usefulness by adapting them to the Cray computers, which
are amonqg the fastest computers in the world and are often referred to as
super computers. When this adaptation is completed, we will have the first
cray version of Dr. Schaefer's Cl programs, and in addition, we have access
to several large Cray computers on which to run the programs. As a result,
we expect to perform very accurate CI calculations on explosive molecules of
interest. The new Cray version of these CI programs and the calculations
that will be done with it are expected to arouse a very large amount of
interest in the scientific community.

In additicon to their speed, another important feature of Dr. Schaefer's
CI programs is their ability to perform a two-confiquration SCF and then
do a CI from that. While the starting point for CI calculations is usually
a sinqgle-configuration SCF, or Hartree-Fock calculation, sometimes the CI will
converqe significantly faster if the starting point is a two-confiqguration

SCF. This is particularly true for molecules like nitromethane in which the
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ground state and first excited state are close in energy, and may also be

« vy e

true for larger explosive molecules that contain the nitro group, such as

nitrobenzene and trinitrotoluene (TNT). Thus the two-configuration SCT

Rt AJDARS SRR
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further increases the ability of Dr. Schaefer's programs to yield a corverged

CI for explosive molecules of interest.

We now give a brief description of the C! method]]’]z. The CI procedure

is used to solve the time-independent, nonrelativistic, rigid-nuclei,
F electronic Schroedinger equation:
HY = EY (M

where the Hamiltonian H, in atomic units, is given by

H=V, +5h + 3 g (2)
’. NI . iy Ly IR%
)
3
: 7.7
Yoy 'r"A"'B’ (3)
! : A<B " AB
(
Z
h = - i - n Fﬁ~ (4)
! A Ay
( R
X qud = ?*““ . (5)
1V

dore the upper-case Latin subscripts represent the (rigid) nuclei, the Tower-

cane Greek subscripts represent the electrons, the Z's are atomic numbers,

g . .
and the v's (r,n, rr , r ) are the distances between the particles. The V
L ABY AL T NN
b -
- term i a constant since the nuclei remain fixed, and therefore we can ignore
it throughout the calculation.
In order to solve the Schroedinger equation, we write the wave function
;a5 a linear combination of symmetry adapted configuration functions ¢ -
l voE L Cv, (6)
[ S > >

where the ¢ 's are linear combinations of Slater determinants.  In a €1
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calculation, one need include only configurations of the same symmetry as the
particular electronic state being investigated (the reference state), since
Hamiltonian matrix elements between configurations of different symmétry are
zero. Hence the configuraticn functions are chosen to have the symmetry of
the reference state. Since the total number of configurations of all
symmetries can be very large, the symmetry adaptation of the configuration
functions greatly reduces the size of the Hamiltonian matrix and simpiifies
the calculation.

The coefficients c, are chosen to minimize the energy

_ <y|Hly- )
£ = YIEE (7)

according to the variation principle. The variation principle ensures that
the lowest calculated energy is an upper bound for the exact lowest eigenvalue
o€ 4 {i.e., the exact ground state energy). It also ensures that the lowest
calculated energy for each symmetry is an upper bound to the exact Towest
eijenvalue of that particular symmetry. Thus if one is investigating an
excited state which is the lowest of a purticular symmetry type, one need
not include any lower states in the same calculation.

Application of the variation principle leads to the well-known eigenvalue
e sation

e - '
; [Hgy-E5. 4 Jey = 0 ()

« ich is solved, by standard techniques, for the eigenvalues [ and coefficients

C,. In the above equation, H_, and S are the Hamilton.an and overlap matrix

st st

olements, respectively, and are given by

Il

/""“/ )
potleg (9)

c = < i N
“st T tsltt : (10)

N
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The main computational step in a CI calculation i the evaluation of the
Hamiltonian matrix elements Hrt.
In order to construct the configuration functions and evaluate the matrix

clements, one chooses a set of atomic basis functions i . One then writes the

atomic orbitals ¢1 as a linear combinaticn of the basis functions

¢i =L yU. (11)

where the coefficients Upi are determined by an SC. {self-consistent field) or
similar calculation. The evaluation of the Hamiltonian matrix elenents is
greatly simplified if one chooses the atomic orbitals ¢ to be orthonormal.
The Hamiltonian matrix elements are then given by

sth + 5 st

H ., =5 ar.h.. + 7T b3, g. . (12)
st i3 1] 13 Piks ijka?iik
whiere
= e - ! i‘\ 4 >
C hﬂj = ,i(r\)th\l,j(r}) (13)
= <“,(P + . ! l‘t_ . , : Y. ( :
gIJP- v.l r]).k(r2)|G]2|'J(r])'.(rz) \]4> :
4
‘ ar.l the coefficients a?? and b?ng are determined by a projective reduction i
N ‘
:alnu]ation]’. The integrals hii and gijk“ which are called orbital !
J : J
sarals, can be obtained from analogous basis set integrals, Hii and ]
) J Ty hy the transformation %
- 41
*]J =3 UO‘an 5, (15) 1
pq t 1. [‘] ]
"
e x * . 3
9. ... =% TN (16) :
1)k pqrs pi qj rk’si’pqgrs
where j
¢ b= e (F ) Ihy e (Fr) - (17) 1
ol ot 1 Xq 17 .
‘ :
N it dhntemdendiendendhanivtdininini s 4
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gpqr‘s = <Xp(r])Xr(r2)]9]2]Xq(r])Xs(r2)> . ( 8)

A Lt ot

The transformation of the two-electron integrals, tq. (16), can be quite time-

consuming and must therefore be handled efficiently. ?
To summarize, the major computational steps in a CI calculation are the

following: a
1) Choose a basis set and compute the basis set integrals
2) Determine the orbitals by means of an SCF calculation ?
2) Transform the basis set integrals to orbital integrals é

4) Choose and construct a set of symmetry adaptcd configuration

functions for the electronic state that is being investigated

5) Calculate the Hamiltonian matrix elements with respect to the

configuration func*tions

6) Compute the lowest eigenvalue(s) and eigenvector(s) of the

Hamiltonian matrix ]

As mentioned previously, a full CI calculation (one in which all the configura-
tions of @ particular symmetry are included) yields the best pussible total

. . -

energy that can be computed for a given set of basi¢ functi as o ’
’

)
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IT. Gaussian &2 Computer Progranm

The Gaussian 87 comiputer program 1s the tatest in g series of mosccular
ortital programs by John Pople and his group at Carnegie-Mellen University.
Sarssizn 82 9s gencrally considered to be the "state of the art" pregram in
the arex of perturbation theory, and as such it has the potential tr yield
very accurate values for molecular activation energies. As in the case of
tre (L celculations discussed previously, the perturbation theory calculations
can be very time-consuming and therefore very fast computers are needed to
“btein accurate results for explosive molecules of interest. We have recently
made substantial progress in this area by gaining access to a new Cray
ceroion of Gaussian 82 that is not yet available to the general public. In
sedition, we have access to several large Cray computers on whick to run the
rrogrant. With these facilities we expect to calculate activation energies
tnat are better and more accurate than those that have previously heen computed
withothe Taussian 02 method.,

fric of the main features of Gaussion 82 is its capapility to perform

Jlter-blescet perturhation theoryM calculations up to fourth order. This

o giqmifrioant dniprovenent over the previous version of the program,

coa e kit caald carry Moller-Plesset perturbaticn calculations up

S o piar s Tgr omany molecules, fourth orvier Moller-Plesset perturbation
teoey ettt s Targe part of the corvelstion encrgy and hence yields accurate

o | o . | UL

antayet o eneraies. Inoaldition, Gaussian 8O can perfarm coupled cluster
cole 0 atiann ap taosecond order, The coupled cluster method also has the

Cipe 1t tooaield accurate activation cnergies for explosive moleculces.
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B. SECH Equation

Carrying out step 1) of the iterations, we put Ly into Lg. (13). Then

Eq. (13) becomes the one-electron Hartree equation:

[h(x)+V(x)]uOi(x) = EOiUOi(X) (17)

and Gy is given, according to Eq. (12), by

b g (x)
sw) = 1- "0 xg—uo—]f‘— . (18)
1

I

Go(x,x

rutting 9 into £q. (2), we obtain the corresponding zeroth order vertex

tunction o

‘O'

0012,3) = 21y (19)

0 12) = -i6a(12)6 (2 '
e 16o(12)6,(21) (20)

weicn, Ly Tas, (4) and (9), yields the zeroth order dielectric function and

sorecned interaction:
(0 (823103 (21)
A2y = p(12)e 7 (32)d(3) . (22)

The atove formula for the polarization, f4. (20), is 4 well-known result
catled the random phase approximation (RPAy 507 and 0 and Wy are the RPA

“relectric function and screened interaction:

! 3 7 ! & )’
PRDA\]“) ") )

T S T P



Eqs. (1)-(5) can be iterated to obtain successively more accurate

expressions for £, I'and P as functionals of G. At cdch stage of the

iterations, the Green's function is determined by © through Eqs. (12) and (13). .

We start the iterations by setting & equal to zero: 1

]

ﬂ

.L0=O (16) 1

]

The iterations are then carried out in the following sequence: J

1) Ly determines Gy through £qs. (12) and (13) a
2) Lg and G0 determine I through £q. (2)
3) Ip and Gy determine Py through Eq. (3)

&) P0 determines €q and g through E£qs. (4) and (5) é

5) I'g and Wy determine Ly and G] through Eqs. {1),(12) and (13) (i.e., Iy
and HO arc substituted into E£q. (1) and then tes. (1),(12) and (13) are ]

solved self-consistently for I and Gl)

~—

©y and G-.1 determine . through Lq. (2)

. and G‘| determine 2 through [qg. (3)

i P} deternines 2 and u] through Cqs. () anrd (5)

) ‘4 and W, determine o and Gy through [qs. (1),(12) and (03) (i.e., N

and Wy oare substituted into La. (1) and then tos. (13,0172) and (13) are

solved self-consistently for o and 62)
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(1) = (.t

(1+) = (x] ,t]+n)

where x includes space and spin coordinates (x) = (¥,z) and lim

The Green's function satisfies the equation

\

. 3
[1— l

: (10
ut]

h(x)-v(1)16(12) - [2(13)6(32)d(3) = ¢(12)

where h is the kinetic energy plus the interaction of the electron with the

nuclei, and V is the average potential:

V(1) = -i/v(13)6(33%)d(3) (1)

The Fourier transform of the Green's function with respect to time is given

3

v

G(X,X' ,m) =

(12)

—

where » is the frequency, and the amplitudes u, and energies E; satisfy the

0)):

4

tullowing equation (which is the fourier transform of fq. (3

[h(x)+V(x)]ui(x) ¢ f;(x,x')uiix')dx' [iui(A) (13)
Vix) = VA, ¥ )n(x")dx' (14) :
* r
p(x) = = ui(x)u,(x) (15) ]
i occ., )
d
[f the self-enerqgy & is independent of frequency, then the amplitudes and
energies given by Lq. (13) are one-electron wave functions and energies, and
]
une nan work in the one-electron picture. ]
R
k
R
]
L - seeatenndendonshantensfened -t et —d

130 is understood.
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A. Green's Function formalism
‘ For a neutral system containing N electrons, one can use Green's function
theory to obtain the following set of self-consistent equationsZ]'““ for the
self-energy &, vertex function T, polarization P, dielectric function ¢, and
(] screened interaction W:
r(12) = i/W(173)6(14)r(42,3)d(34) (1)
( _ 5(12) ,
¢ r(12,3) = s(12)s(13) + JGGTW G(46)r(67,3)6(75)d(4567) (2)
(12) = -i[G(23)r(34,1)G(42)d(34) (3)
¢ e(12) = ¢(12) - [p{13)v(32)d(3) (4)
W(12) = fv(13)e_](32)d(3) (5)
! w ore v is the bare instantaneous Coulomb interaction:
v(12) = vlry,ry)s(t,t,) (6)
2 2
] V(F ) = = (7)
1272 > > l
"1 "2
e cne-electron Green's function
!
(12) = -il=(1)v(2)>0(ty-t)) -« 7(2), (1) (t,-t)] (8)
1 t,»-t
' '(t]"tz) = b ’ (9)
0 t]«t2
e is the charge of an electron, ¢ is the Heisenberg field operator, and the

' brackets < - indicate the ground statc expectation value,

equations, we have used the notation

PR GNP

In the above

SRR ‘!A . N
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above is the screened interaction used in the cxpansion of the self-energy.

This screened interaction greatly speeds up the convergence of the series
for the self-energy.

The first term in the series for the self-energy leads to the screened
exchange plus Coulomb hole (SECH) one-electron equation‘?]'23 which is solved
self-consistently to obtain correlated molecular energies. The SCCH

equation has never been used before in molecular calculations and, as

mentioned above, is expected to yield accurate values for molecular energies.

The second term in the self-energy series leads to a new one-electron
equation that goes beyond the SECH equation to include higher order correla-
tion effects.27 This new equation, which we have called the SECHZ equation,
has never been used before in either molecular or solid state calculations.

T4

't is a completely new equation that contains even more correlation thkan the
SiCH equation and is therefore expected to produce significant improvements
i the calculation of correlated molecular energies. The basic Green's

f i tion formalism, the SECH equation, and the S{CH2 equation are described

inodetyaill in Sections A-C.
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V. Green’s function Techniques

We have developed a new forma]ismz]"Z/, bised on Green's function theory,
for including correlation in molecular calculations. To our knowledge, this
approach has never been applied to molecules. In this new formalism, one
uses Green's function theory to obtain a set of successively more accurate
expressions for the self-energy, which contains all of tlie exchange and
correlation effects. Using this new formalism, one can include correlation
effects in a successively more accurate way, until one obtains the desired
degree of accuracy for the molecular energies. In this process, new
molecular one-electron equations will be developed.

One of the main advantages of this Green's function formalism over
cther perturbation type approaches is that the self-energy is expanded in

powers of a screened interaction rather than a bare Coulomb interaction. The

screening of the interaction greatly speeds up the convergence of the power
series for the self-energy.

Using only the first term in this series for the self-energy, wo
vbtained excellent results for solid5.21_23 The question is, can this
Green's function method also be applied to smaller systems such as molecules?
e now o present very strong evidence that Green's function methods can be
caccessfully applied to molecules. There is a very large literature on
the use of Green's function approaches to calculate correlated molecular
energies. References 28-85 refer to some of the authors who have
successfully applied Green's function techniques to molecules. These
pipers, which are only a partial 1ist of the large body of publications in
this area, clearly show that Green's function approaches can be successfully
applied to molecules.

(nce aqgain, it shculd be noted that what distinguishes the Green's

function nmethod of this proposal from the Green's function methods cited

C m e m e oy e s R
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is true, then including more excitations would increase the error produced by
this inconsistency. This would explain why BWINZ, which has single, double,
triple and quadruple excitations, gives worse results than BWENY, which has
only double excitations.

The BWEN method, which is fast and can thus be applied to relatively
large molecules, yie1d§ good results for the activation energy of methy)
nitrite. The results are not as good for nitromethane and thus some
improvements are needed before the BWEN procedure can be generally applied to
larger molecules. OQOne possible improvement is the incorporation of a two-
configuration SCF into the MNDO method. The two-confiqguration SCF, rather
than a single-determinant SCF (HF), can then be used as the Zero-order
reference state and the starting point for excitations in the BWEN second-
u-~der perturbation treatment. The two-configuration SCF is expected to work
weil for molecules such as nitromethane, in which the ground state and first

excited state are close in energy.
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Reaction

CH3NO2 + CH

+ NO

3 2

Cis CH30NO > CH30 + NO

Trans CH3ON0 + CH

3O + NO

Eerriment20 MﬂpU/CI]g

59.0 46.5
41.1 53.1
41.1

BHEN]

33

33

.3

.0

BWENZ

29.1

28.2

27.3

Table I. Comparison of computed activation energies and experimental
Activation energies are in kcal/mole.

values.
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compared these with Engelke's MNDO/CI resu]ts]9 and with experimental va. les.

The MNDO,/C! prucedure used by Cngelke is MNDQ plus a minimal C!, where this

minimal CI includes only the lowest double excitation. The calculated BWEN,

BWENY, and BWENZ2 reaction path curves for the dissociation of CH30N0 (cis and

trans) and CH3N02 are shown in Figs. 1-3, respectively. The MNDO/CI curves

we calculated are shown for purposes of comparison. They are similar to the

results Engelke obtained. Table I gives our computed BWEN, BWEN1, and BWEN2

activation energies and compares them with Engelke's MNDO/CI results and with

experimentzg. As shown by the table, the BWEN activation energy for CH3NO2

i< within 11 kcal/mole of the experimental value and is only a slight

improvement over the MNDO/CI result. For CH3ONO. however, the BWEN calculation

is a substantial improvement over the MNDO/CI result, giving activation

enerqgies that are within 4 kcal/mole and 3 kcai/mole of experiment for the

cis and trans stereoisomers, respectively. fEngelke calculated the MNDO/CI

energy only “or cis CH3ONO. For both CH3ONO and CH3N02, the BWLHN] activation

energies are not as close to experimental values as the BWEN results are,

while the BJTN2 activation energies are even farther from experiment than the

Luilil resuits, Thus for the activation energies of methyl nitrite and

nitromethane, BWEN gives the best results. In both cases, these are improve-

ments uver the MNDO/CI results. |
Since BWEN gives better results than BWEN] and BWEN2 for the activation

enerqgiles ¢f CH3ONO and CH3N02, it appears that the procedure that works best

f.r larger nolecules is standard second-order perturbation theory in which !

the zero-order refcrence state is the HF ground state. When a different Zero-

order reference state (the lowest root of a two-configuration Cl) is used but

the excitations are still with respect to the HF ground state, as in BWENI [

and DWEN2, the results do not appear to be as gqood. This may be due to the

inconsistency of using excitations from the HF ground state while using a

cerv-order reference state that is not the HF ground state. [If this (




I e ASNE R RN
1 e

bl s v g Walh Ml B diagl)

over a.1 states that are doubly excited with respect tu the HF ground state.
The MiDOC procedure also contains two variants of BWEN, called BWENT and
BWENZ2. In the BWEN1 method, the zero-order reference state for the second-
order perturbation treatment is not the HF ground state but instead is the
lowest root of a two-configuration CI matrix, where the two configurations
are the HF ground state and the lowest doubly-excited state. The perturbation
expansion then extends over all configurations that are doubly-excited with
respect to the HF ground state. In the BWEN2 method, the zero-order reference
state is again the lowest root of the two-configuration Cl matrix mentioned
above, but the perturbation expansion extends over single, double, triple and
quadruple excitations with respect to the HF ground state. Since the BWENZ
perturbation expansion extends over a larger configuration space than BWENI]
does, BWEN2 is more time-consuming.

We considered the following reactions for the dissociation of CH3NO2

and CH3ON0:

CH, N0, » CH

3H0, 3 * N0,

CH,ONO CH30 + NQ
In these reactions, the dissociation releases highly reactive radicals that
then attack whatever is available, releasing more energy than the bond
breaking (or dissociation) required and thereby producing an explosion. In
the case of methyl nitrite, we calculated the activation energy for
dissuciations proceeding from both the cis and trans configurations. As
methy! nitrite probably contains both configurations, the dissociations
could proceed either from both of them or from just one, with the other
first converting to it.

for the three reactions shown above, we calculated the activation

energies of the molecules using the BWEN, BWENT and BWENZ procedures and

P W SODN. |
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[11. MHDOC Procedure

The MNDOC]6 method, which is a new correlated version of the MNDO]7

method, is a semi-empirical procedure for including correlation in calculations
of molecular energies. One of the advantages of semi-empirical methods is
that they are very fast, Due to its speed, the MNDOC method can be used to
calculate potential surfaces, transition states, and activation energies of
large explosive moiecules. We have recently used the MNDOC method to calculate
the activation energy of methyl nitrite (CH30N0) and nitromethane (CH3N02).]8
In the case of methyl nitrite, the computed results were in good agreement
with experiment, indicating that this fast method has the potential to yield
accurate molecular activation energies. The nitromethane studies have
sugqested a modification of the MNDOC procedure which is expected to
significantly increase its accuracy and thereby make it applicable to a wide
range of explosive molecules. MWe have already begun work on this new
modification, which is the incorporation of a two-configuration SCF into the
M.00C procedure. The two-configuration SCF is expected to work well for
mnlecules 1ike nitromethane in which there is a small energy separation
hetween the ground state and first excited state. The two-configuration SCF
is also expected to work well for larger explosive molecules that contain
the nitro group, such as nitrobenzene and trinitrotoluene (TNT). The MNDOC
me-hod and results are described in more detail below.

Second-order perturbation theory, which is very fast, forms the basis of the
.00 method.  The MENOC procedure uses Brillouin-Wigner perturbation theory with
Lpstein-ilesbet energy denominators (BWEN). In the BWIN method, the second-

order perturbation theory is based on a single reference determinant: the

Hartree-fock (HF) ground state, and the perturbation expansion extends over
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] N
“Rp,\“” =wy(12) . (25)

As shown by Eqs. (17), (18), (20), (21) and (23), the wive functions and
energies that appear in the RPA formula for the dielectric function are
Hartree wave functions and energies. Therefore une should use Hartree wave
functions and energies to compute RPA Jdielectric functions,

Continuing the iterations with step 5), we put IU and NU inty tg. (1)

to obtain the first order self-energy bpoand first erder Greents function Gy
o + o g e
Using £Eq. (12), Eg. (22) becomes

= (12 = 3 2
u]\]&-) 161(1‘_)N

NARII (27)
This expression for 9 is the first term in the expansion of : in powers of
the screened interaction W, The main puint Lere is that we are expanding in
a screened interaction rather than a bare Coulomb interaction. The screencd
interaction makes it possible to include more correlation while using fewer
terms in the expansion (compared to the usual type of bare Coulomb interaction
expansion;.

[ we want to work in the one-clectron picture, we must obtain an e:pression
fr o that 1s independent of frequency. We will then put this frequency-

independent o intu £q. (13) to obtain the one-electron wave functions Uy and

i
enerqgies F]j that are used to define G] (according to tq. (12)). In order
to obtain a self-enerqgy 2 that is independent of frequency, we write the

screencd interaction wo as a bare Coulomb part plus a part wg due to

polarization:

(172) = v '2) wuite) (28)
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It can be shown that wg(12) is a sharply peaked function of t]-tz. Therefore

~>
~J

we will approximate wg in Eq. (28) by its integrated value times a ! function,

however, instead of 6(t]-t2+n) we will use 6(t]—t2) S0 as to pick up

contributions from both parts of the Green's fr*#tionZI'Zj:

P f
) uD(172) = P (x; %0070} 6(t;-t,) . (29)

) then becomes the screened exchange plus Coulomb hole (SECH) expressiun  for

é the self-energyzl-zj, which contains both exchange and correlaticon:

ESE_CH(X’Xl) = -p‘l(xyx )wo(x)x a(D:O)

(30)
{ +»] S{x,x " Ywnalx,x',=0)-vir,r'y ]
r 2 \)
®
3
{ where
> o P . A
s Wolx,x',w=0) = v(r,r') + Wyix’, =t) (31)
CE
h and ol is the density matrix computed with the wave functions Uy
i o (ux') = o g (xuy s (x) {32)
1V o i i =7
o] iocc, VT
{ fccording to Eq. (22), we can write Wy in terts of E
L ]
o NO(XI’XZ’”:O) = fv(r],r3):0 (xS,x.,N‘-U}dx3 (33)
wnere aO(X],Xz,m=O) is the static RPA dielectric function. AL nuted civiier,
f the RPA dielectric function corresponds to the Hartree equatiun and is
L .
' calculated with Hartree wave functions and energies.
4
} Putting rcpiy, which is independent of frequency, into tq. (13), we
; ubtain the SECH one-electron equation:
o
!
.
[
i»
, @
..
X ,
Lo : ‘ _ _ I ;i
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t'

: [V () Juy (%) + rgpey Oax uy(x)dxt = € Luy L (x) (34)
ft' which is solved self-consistently to obtain correlated wave functions and

energies, During this self-consistent process, the screening function €0

remains constant (it is not recalculated each time with SECH wave functions and

*i energies, but rather it is calculated once and for all with Hartree wave functions

{ and energies), The SECH wave functions Uy and SECH energies E]i are used to

define the first order Green's function G,, according to Eq. (12):

]’
uy (2 Ju 4 (x)

— . (35)

G, (x,x",w) = & —
l w-E]]- :

i
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- C. SECHZ Fquation
%" Putting 5 and G] into Eq. (2), we obtain un equation for the first
" -
order vertex function I )
1
621(]2) ]
r](]2’3) = §(12)6(13) + fgﬁ}ngj-G](46)r](67,3)61(75)d(4567). (36) i
]

Then using Eq. (27) for Iy Eq. (36) becomes

r](12,3) = 6(12)6(13) + iwo(1+2)jc](16)r](67,3)G](72)d(67). (37)

Solving the above equation for I'y» we obtain an infinite power series in NO:

r,012,3) = s(12)6(13) + 1w0(1+2)e](13)c](32)
- Ho(172) 6, (63)6,(27)Ug(677)6,(16)G,(72)d(67)
. + . y + . ) + .
- i (172) [6, (8316, (39N (87 9)Gy (66)6y (97)Hg(677)6,(16)G; (72)d(6785)
¥ (29)
Fi This ﬁ and £ explicitly satisty the Ward identity. Putting Eq. (38) for
' . into £q. (3), we obtain the first order polarization Py:
} e - -6 (206 0)
r-.
| H61 (5106, (16005 6)6, (25)G, (62)d(56) ]
A
* +1(G](71)G](]S)wo(7+8)G](57)61(86)NO(5+6)G](25)G](62)d(5678) ]
' )
| ¢ + .
3 + . D\ LETEWS
» -jcl(91)cl(1,10)w0(9 10)51(/9)G1(10,3)A0(7 d)b‘(57)Gl(86)w0(5 6) 1
» L
x G,(25)6,(62)d(5678910) ]
F. | P
[ : (39) ;
3
3 3
K
3
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The above expression for P], Tike Eq. (38) for (S is an infinite power
series in Wy. Putting Py into Eq. (4), we obtain the corresponding first

order dielectric function €y"
ep(12) = 6(12) - [P, (13)v(32)d(3) . (40)

Then putting €] into Eq. (5), we obtain the first order screened interaction

N]:

-1

W (12) = [v(13)eg

(32)d(3) . (41)

Since the above expression for P] goes beyond the RPA to include higher order
correlation terms, we call it the generalized RPA (GRPA) polarization, and we
call £ and N] the GRPA dielectric function and GRPA screened interaction

respectively:

Perpal12) = P(12) (42)
cappal12) = £,012) (43)
HGRPA(IZ) =W, (12) . (44)

both HO and G]. As mentioned previously, wo is the RPA screened interaction

o and is computed with Hartree wave functions and energies, while G] is computed
» with SECH wave functions and energies, according to Eq. (35). Thus both

L ¢ Hartree wave functions and energies, and SECH wave functions and energies are
b

f used in the computation of PGRPA and CGRPA"

t ¢

I I P D - P PO [ ! Ca P o al aiat ML a e

fccording to Egs. (39) and (42), the GRPA formula for the polarization contains
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£q. (39) can be written as an integral equation if one defines the

two-body polarization = by

"(] ’213:4) = “O(] :2’314)
-fn(5,2,3,6)u,(5"6)n,(1,5,6,4)d(56) (45) ;
O |
where {
15(1.2,3,4) = -i6,(12)6,(34) . (406)

Solving £q. (45) for = yields
+(1,2,3,8) = 7,(1,2,3,4)
~[7(5,2,3,00H,(576)m,(1,5,6,4)d(56)
+[n(7,2,3,8)(7 *8)n o5.7,8,60U O('*o)n0(1,5,6,4)d(5678)
- 1+09,2,3,1004,(9710)5,(7,9,10,8)M(7"8)(5,7,8,6)
x Wgl5'6)my(1,5,6,4)d(5675910)
+ . (47)

Tt oone detines

P](]Z); 7 (2,1,1,2)

atd uses L. (47), one obtains the followiny equation for P]:

¢ )
4 -
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2,1,1,2)

B 6 (5 6 (2,5,6,2)d(56)
0 0 0 .
+ - -
#fng(7,0,0,8)UG(778) 1(5,7,8,6)0,(5¥6) n,(2,5,6,2)d(5678) ‘
+ 3
- frp9,1,1,10)u,(9 1O)n0(7,9,10,8)w0(7+8)n0(3,7,8,6) »
wO(5+6)n0(2,5,6,2)d(567891O) :
-]
b (49) Y
Then putting Cq. (46) for 19 into Eq. (49), one obtains Eq. (39). Thus P1(12)
is given by the integral equation (45) if one first solves Eq. (45) for = 'J,
1
and then uses Cq. (48). ]
One can solve Eq. (45) for « in terms of inverses if one defines the
AU B -1 i
inverses = 0 and G‘ by I1
1
1
[+01,2,3,4)571(4,6.5,1)d(14) = 5(25)5(36) (50) -]
»
7301.2,3,4)771(6,3,2,5)d(23) = £(15)6(46) (51) »
[4(1,2,3,4)="1(4,6,2,5)d(24) = 5(15)5(36) (52) :
[+01,2,3,4)=71(6,3,5,1)d(13) = £(25)5(36) (53) ’
1, A -1 - ‘
5 1,2,3,9) = 46 (12)6;(34) (54) |
4
jcl(lz)c;](z3)d(2) - (13) (55) )
6, (12)67" (31)a(1) = 5(23) (56)
1
i
where, according to Eqs. (46) and (54 )-(5¢6), »
f~U(l,z,E,Q)w&](4,6,5,l)d(14) = 0(25)8(36) (57)
®
. ‘A U LY B - e l‘ - - -. s -k re o o - - . - a* . - >-‘ u - v g _‘;
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fipl1.2,3,4)n51(6,3,2,5)d(23) = 6(15)s(36) (58)
[rol1.2,3,8)31(4,6,2,5)d(23) = 5{15)5(36) (59)
fry1,2,3,4)75"(6,3,5,1)d(13) = o(25)5(a6) . (60)
Multiplying both sides of Eq. (45) by
-1 -1
n(10,3,2,7) 757 (4,9,8,1)
integrating over coordinates 1,2,3 and 4, and then replacing coordinates
10,9,8,7 by 1,2,3,4 respectively, one obtains
10,2,3,8) = 11(1,2,3,8) +ug(31)s012)5(36) (61) é
Using £q. (54) for nb] , Eq. (61) becomes 1
—) - -1 -1 + 2Y (2 <
T (1,2,3,4) = 6 (12)6,7(34) +Wy(371)s(12)0(54) . (62) q
1s then given by '
) -1 J
\‘)L)‘),q) - [” (]xLa3’4>] ?
-1 -1 0 NEVERRL ‘
= L6y (12)67(34) + uy(3"1)8(12)6(33)) (63) |
where the inverse is defined by Eqs. (50) - (53). After #(1,2,3,4) has been i

calculated from tq. (63), P](XZ) is then given by Lq. (48).

Continuing the iterations with step 9), we put I, and W, into Eq. (1) to

determine ;Z and GZ: '

.......
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£,(12) = ifu (173)6,(14)r,(42,3)d(34). ( 64)
{ Putting Eq. (38) for Iy into Eq. (64), we obtain an infinite series for Ly
5,(12) = 16,(12)W,(1%2)
C - f6,(14 ), (13)6, (43)6, (32D (4 2)d(34)
| -ij62(14)w](]+3)G](63)G](37)»!0(6+7)G](46)G](72)w0(4+2)d(3467)
¢ +fG2(14)w](1+3)G](83)61(39)N0(8+9)G](68)G](97)w0(6+7)G](46) i
x Gy (72)U,(472)d(346789) |
d
‘ + oo (65) 1

~e now define 1! to be the first two terms in the above series:

2 %4

¢ 5(12) = 1c2'(12)w](1*2) ]
-J6, (1830, (173)6, (43)6, (32)W(472)d(34) . (66) J

(] | » | | | 1
The above expression for 22 is the first two terms in the expansion of I 1

in powers of the screened interaction W, and Gé is the corresponding Green's E

runction, We will call xé the second order self-energy since it contains the é

S first and second terms of the power series (it contains the W term and the w2 1
teri), and we will call Gé the second order Green's function. :

p [n order to continue working in the one-electron picture, we must obtain a
an expression for zé that is independent of frequency. We will then put this ?

into £q. (13) to obtain a new one-electron equation that contains higher order E

q correlation terms. This new one-electron equation will yield correlated wave é

functions Upj and correlated energies EZi which, through Eq. (12), will yield 1
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the second order Green's function Gé. In order to obtain a frequency-

independent expression for :é, we treat the screened interactions that appear

in Eé (i.e., WO and N]) in the same manner as “O was treated in the derivation of

the SECii equation. In other words, W, and w] are written, according to

£q. (28), as a bare Coulomb part plus a part due to polarization:

Wg(472) = v(a'2) +uf(a*2) (67)
4, (173) = v(173) +uj 173y (68)

Then we approximate wg and w$ by their integrated value times a & function:

p p

M(872) = Wolxgoxp,0=0) 8(t -ty n) (69)
P+ .

W (173) - s¢$(x],x3,w:0)6(t]-t3+:1) ) (70)

In some cases, we remove the n from the & functicns in Lqs. (69) and (70)

55 as to pick up contributions from both parts of the Green's function,
iccording to Er. (29). In other cases, we retain the n in the £ functions in
£as. (%3) and (70) so as to pick up contributions from only one of the parts
of the Green's function. Since cach of the Green's functions in Eq. (66)

has two parts (c.f. Eq. (8)), then the second term of [q. (66) yields eight
terms when Eq. (8) is substituted for G. By carefully considering the time
Z“ependence of the Green's functions in each of these terms and by using the
appropriate - functions in cach case, we obtain the following frequency-

independent expression for U5, which we call iSECHZZ
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o

tgpena(yx2) = mg(xy )y (X xpsu0)

1 . O
+t 5 6(x1,xz)[w](x],xz,u=u)-v(r],r2)]

fx ],x4 ](X],X3;N=O)D](X4,X3)D](X3,X2)WO(X4,Xz,w=0)dx3dx4
1
t ?'pr(X],x4)W](X],X3,w=0)p](X4,X3)6(X3,x2)[WO(X4,X2,w: 0)-v (r4, Z ) Jdx dx4

1 > o>
+ 5 fS(X],Xq)[W](X],X3,w=0)—V(r],PB)]p](X4,X3)p](X3,X2)N0(X4,Xz,w=0)dx3dxq

|

-7 IG(X],X4)[W (x ],X3;x =0)- ( ]u (X4,X3)6(x3,x?)[uo(x w=0)

4%
-v(r4,r2)]dx3dx4
where o, is the density matrix computed with the wave functions Uy,

*
pz(x,x') = & u21(x')u2i(x) . (72)
i occ.
As shown by Eq. (71), ZSEC% contains four higher order correlation terms (in

addition tr the screcned exchange and Coulomb hole terms). The first of these

“igher cerder terms is the product uf tuo screened exchanges, the second is the

product of a screened exchange and a Coulomb hole, the third is the product of a

{oulomb hole and a screened exchange, and the fourth is the product of two

Coulomb holes. Thus :SECHZ is a natural second order extension of the screened

exchanje plus Coulomb hole self-energy XSECH'
Putting ESECHZ into Eq. (13), we obtain a new one-electron equation that

ques beyund the SCCH equation to include higher order correlation terms:
{ VA 5 [ [ ) ! S , 73)
[h\x)<\\x)]u21\x) 4JQSECH2(x,x )uz](x )dx EZiuZi(x) . (72)

We call this new equation the SECHZ equation. It is solved self-consistently
to obtain wave functions Uy and energies Esy that have a high degree of

correlation. During this self-consistent process, the screening functions

PO S B
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) and 3 remain constant (they are not recalculated cach time with SCCHZ

wave functions and energies, but rather L is calculated once and for all

with Hartiee wave functions and energies, and € is calculated once and for

all with SECH wave functions and energies). Alsc py remains constant during
the self-consistent process (p] is calculated once and for all with SCCH wave i
functions). The only quantities that change during the self-consistent process

are the SECHZ2 wave functions u,. and the SECHZ2 energies E2i'

2i )

The SECH2 equation is a new one-electron equation that has never been _ ﬂ
used before in either molecular or solid state calculations. It is expected
to lead tu substantial improvements in the calculation of correlated 1
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